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Object description

7.1 Overview

Objects are represented as a collection of pixels in an image. Thus, for purposes of recognition we
need to describe the properties of groups of pixels. The description is often just a set of numbers:
the object’s descriptors. From these, we can compare and recognize objects by simply matching
the descriptors of objects in an image against the descriptors of known objects. However, to
be useful for recognition, descriptors should have four important properties. First, they should
define a complete set. That is, two objects must have the same descriptors if and only if they have
the same shape. Secondly, they should be congruent. As such, we should be able to recognize
similar objects when they have similar descriptors. Thirdly, it is convenient that they have
invariant properties. For example, rotation-invariant descriptors will be useful for recognizing
objects whatever their orientation. Other important invariance properties include scale and
position and also invariance to affine and perspective changes. These last two properties are very
important when recognizing objects observed from different viewpoints. In addition to these
three properties, the descriptors should be a compact set. Namely, a descriptor should represent
the essence of an object in an efficient way. That is, it should only contain information about
what makes an object unique, or different from the other objects. The quantity of information
used to describe this characterization should be less than the information necessary to have a
complete description of the object itself. Unfortunately, there is no set of complete and compact
descriptors to characterize general objects. Thus, the best recognition performance is obtained
by carefully selected properties. As such, the process of recognition is strongly related to each
particular application with a particular type of objects.

In this chapter, we present the characterization of objects by two forms of descriptors.
These descriptors are summarized in Table 7.1. Region and shape descriptors characterize
an arrangement of pixels within the area and the arrangement of pixels in the perimeter or
boundary, respectively. This region versus perimeter kind of representation is common in
image analysis. For example, edges can be located by region growing (to label area) or by
differentiation (to label perimeter), as covered in Chapter 4. There are many techniques that can
be used to obtain descriptors of an object’s boundary. Here, we shall just concentrate on three
forms of descriptors: chain codes and two forms based on Fourier characterization. For region
descriptors we shall distinguish between basic descriptors and statistical descriptors defined by
moments.
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Table 7.1 Overview of Chapter 7

Main topic Sub topics Main points

Boundary How to determine the boundary and the Basic approach: chain codes. Fourier

descriptions region it encloses. How to form a description descriptors: discrete approximations;
of the boundary and necessary properties in cumulative angular function and
that description. How we describe a elliptic Fourier descriptors.
curve/boundary by Fourier approaches.

Region How we describe the area of a shape. Basic Basic shape measures: area; perimeter;

descriptors shape measures: heuristics and properties. compactness; dispersion. Moments:
Describing area by statistical moments: need basic; centralized; invariant; Zernike.
for invariance and more sophisticated Properties and reconstruction.

descriptions. What moments describe, and
reconstruction from the moments.

7.2 Boundary descriptions

7.2.1 Boundary and region

A region usually describes contents (or interior points) that are surrounded by a boundary (or
perimeter), which is often called the region’s contour. The form of the contour is generally
referred to as its shape. A point can be defined to be on the boundary (contour) if it is part of
the region and there is at least one pixel in its neighbourhood that is not part of the region. The
boundary itself is usually found by contour following: we first find one point on the contour
and then progress round the contour either in a clockwise direction, or anticlockwise, finding
the nearest (or next) contour point.

To define the interior points in a region and the points in the boundary, we need to con-
sider neighbouring relationships between pixels. These relationships are described by means of
connectivity rules. There are two common ways of defining connectivity: four-way (or four-
neighbourhood) where only immediate neighbours are analysed for connectivity; or eight-way
(or eight-neighbourhood) where all the eight pixels surrounding a chosen pixel are analysed for
connectivity. These two types of connectivity are illustrated in Figure 7.1. In this figure, the pixel

(a) Four-way connectivity (b) Eight-way connectivity

Figure 7.1 Main types of connectivity analysis
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is shown in light grey and its neighbours in dark grey. In four-way connectivity (Figure 7.1a), a
pixel has four neighbours in the directions north, east, south and west, its immediate neighbours.
The four extra neighbours in eight-way connectivity (Figure 7.1b) are those in the directions
north-east, south-east, south-west and north-west, the points at the corners.

A boundary and a region can be defined using both types of connectivity and they are always
complementary. That is, if the boundary pixels are connected in four-way, the region pixels
will be connected in eight-way and vice versa. This relationship can be seen in the example
shown in Figure 7.2. In this figure, the boundary is shown in dark grey and the region in light
grey. We can observe that for a diagonal boundary, the four-way connectivity gives a staircase
boundary, whereas eight-way connectivity gives a diagonal line formed from the points at the
corners of the neighbourhood. Notice that all the pixels that form the region in Figure 7.2(b)
have four-way connectivity, while the pixels in Figure 7.2(c) have eight-way connectivity. This
is complementary to the pixels in the border.

(a) Original region (b) Boundary and region for (c) Boundary and region for
four-way connectivity eight-way connectivity

Figure 7.2 Boundaries and regions

7.2.2 Chain codes

To obtain a representation of a contour, we can simply store the coordinates of a sequence of
pixels in the image. Alternatively, we can just store the relative position between consecutive
pixels. This is the basic idea behind chain codes. Chain codes are one of the oldest techniques in
computer vision, originally introduced in the 1960s (Freeman, 1961; an excellent review came
later: Freeman, 1974). Essentially, the set of pixels in the border of a shape is translated into a
set of connections between them. Given a complete border, one that is a set of connected points,
then starting from one pixel we need to be able to determine the direction in which the next
pixel is to be found. Namely, the next pixel is one of the adjacent points in one of the major
compass directions. Thus, the chain code is formed by concatenating the number that designates
the direction of the next pixel. That is, given a pixel, the successive direction from one pixel to
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the next pixel becomes an element in the final code. This is repeated for each point until the
start point is reached when the (closed) shape is completely analysed.

Directions in four-way and eight-way connectivity can be assigned as shown in Figure 7.3.
The chain codes for the example region in Figure 7.2(a) are shown in Figure 7.4. Figure 7.4(a)
shows the chain code for the four-way connectivity. In this case, we have that the direction from
the start point to the next is south (i.e. code 2), so the first element of the chain code describing
the shape is 2. The direction from point P1 to the next, P2, is east (code 1), so the next element
of the code is 1. The next point after P2 is P3, which is south, giving a code 2. This coding
is repeated until P23, which is connected eastwards to the starting point, so the last element
(the 12th element) of the code is 1. The code for eight-way connectivity shown in Figure 7.4(b)
is obtained in an analogous way, but the directions are assigned according to the definition in
Figure 7.3(b). Notice that the length of the code is shorter for this connectivity, given that the
number of boundary points is smaller for eight-way connectivity than it is for four-way.

‘North North
N%rth West N%rth East
7 1
 West . .| East West . .| East
3 Origin 1 6 Origin P
South South
802u L] West So:th East
5 3
(a) Four-way connectivity (b) Eight-way connectivity

Figure 7.3 Connectivity in chain codes

{2,1,2,2,1,2,2,3,2,2,3,0,3,0,3,0,3,0,0,1,0,1,0,1} code={3,4,3,4,4,5,4,6,7,7,7,0,0,1,1,2}
(a) Chain code given four-way connectivity (b) Chain code given eight-way connectivity

Figure 7.4 Chain codes by different connectivity
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Clearly, this code will be different when the start point changes. Accordingly, we need start
point invariance. This can be achieved by considering the elements of the code to constitute the
digits in an integer. Then, we can shift the digits cyclically (replacing the least significant digit
with the most significant one, and shifting all other digits left one place). The smallest integer
is returned as the start point invariant chain code description. This is illustrated in Figure 7.5,
where the initial chain code is that from the shape in Figure 7.4. Here, the result of the first
shift is given in Figure 7.5(b); this is equivalent to the code that would have been derived by
using point P1 as the starting point. The result of two shifts (Figure 7.5¢) is the chain code
equivalent to starting at point P2, but this is not a code corresponding to the minimum integer.
The minimum integer code (Figure 7.5d) is the minimum of all the possible shifts and is the
chain code that would have been derived by starting at point P11. That fact could not be used
in application since we would need to find P11; it is much easier to shift to achieve a minimum
integer.

code={3,4,3,4,4,5,4,6,7,7,7,0,0,1,1,2} code={4,3,4,4,5,4,6,7,7,7,0,0,1,1,2,3}
(a) Initial chain code (b) Result of one shift
code={3,4,4,5,4,6,7,7,7,0,0,1,1,2,3,4} code={0,0,1,1,2,3,4,3,4,4,5,4,6,7,7,7}
(c) Result of two shifts (d) Minimum integer chain code

Figure 7.5 Start point invariance in chain codes

In addition to starting point invariance, we can obtain a code that does not change with
rotation. This can be achieved by expressing the code as a difference of chain code, since relative
descriptions remove rotation dependence. Change of scale can complicate matters greatly, since
we can end up with a set of points that is of different size to the original set. As such, the
boundary needs to be resampled before coding. This is a tricky issue. Furthermore, noise can have
drastic effects. If salt and pepper noise were to remove, or to add, some points the code would
change. Such problems can lead to great difficulty with chain codes. However, their main virtue
is their simplicity and as such they remain a popular technique for shape description. Further
developments of chain codes have found application with corner detectors (Liu and Srinath,
1990; Seeger and Seeger, 1994). However, the need to be able to handle noise, the requirement
of connectedness, and the local nature of description motivate alternative approaches. Noise can
be reduced by filtering, which leads back to the Fourier transform, with the added advantage
of a global description.

7.2.3 Fourier descriptors

Fourier descriptors, often attributed to early work by Cosgriff (1960), allow us to bring the
power of Fourier theory to shape description. The main idea is to characterize a contour by a set
of numbers that represent the frequency content of a whole shape. Based on frequency analysis,
we can select a small set of numbers (the Fourier coefficients) that describe a shape rather than
any noise (i.e. the noise affecting the spatial position of the boundary pixels). The general recipe
to obtain a Fourier description of the curve involves two main steps. First, we have to define a
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representation of a curve. Secondly, we expand it using Fourier theory. We can obtain alternative
flavours by combining different curve representations and different Fourier expansions. Here,
we shall consider Fourier descriptors of angular and complex contour representations. However,
Fourier expansions can be developed for other curve representations (van Otterloo, 1991).

In addition to the curve’s definition, a factor that influences the development and properties
of the description is the choice of Fourier expansion. If we consider that the trace of a curve
defines a periodic function, we can opt to use a Fourier series expansion. However, we could
also consider that the description is not periodic. Thus, we could develop a representation based
on the Fourier transform. In this case, we could use alternative Fourier integral definitions. Here,
we will develop the presentation based on expansion in Fourier series. This is the common way
used to describe shapes in pattern recognition.

It is important to notice that although a curve in an image is composed of discrete pixels,
Fourier descriptors are developed for continuous curves. This is convenient since it leads to a
discrete set of Fourier descriptors. We should also remember that the pixels in the image are
the sampled points of a continuous curve in the scene. However, the formulation leads to the
definition of the integral of a continuous curve. In practice, we do not have a continuous curve,
but a sampled version. Thus, the expansion is approximated by means of numerical integration.

7.2.3.1 Basis of Fourier descriptors

In the most basic form, the coordinates of boundary pixels are x and y point coordinates. A
Fourier description of these essentially gives the set of spatial frequencies that fit the boundary
points. The first element of the Fourier components (the d.c. component) is simply the average
value of the x and y coordinates, giving the coordinates of the centre point of the boundary,
expressed in complex form. The second component essentially gives the radius of the circle
that best fits the points. Accordingly, a circle can be described by its zero-order and first order
components (the d.c. component and first harmonic). The higher order components increasingly
describe detail, as they are associated with higher frequencies.

This is illustrated in Figure 7.6. Here, the Fourier description of the ellipse in Figure 7.6(a) is
the frequency components in Figure 7.6(b), depicted in logarithmic form for purposes of display.
The Fourier description has been obtained by using the coordinates of the ellipse boundary
points. Here we can see that the low-order components dominate the description, as to be

|qu FCV”D 1

n
(a) Original ellipse (b) Fourier components

Figure 7.6 An ellipse and its Fourier description

286 Feature Extraction and Image Processing



expected for such a smooth shape. In this way, we can derive a set a numbers that can be used
to recognize the boundary of a shape: a similar ellipse should give a similar set of numbers,
whereas a completely different shape will result in a completely different set of numbers.

We do, however, need to check the result. One way is to take the descriptors of a circle,
since the first harmonic should be the circle’s radius. A better way is to reconstruct the
shape from its descriptors; if the reconstruction matches the original shape then the description
would appear correct. We can reconstruct a shape from this Fourier description since the
descriptors are regenerative. The zero-order component gives the position (or origin) of a
shape. The ellipse can be reconstructed by adding in all spatial components, to extend and
compact the shape along the x- and y-axes, respectively. By this inversion, we return to the
original ellipse. When we include the zero and first descriptor, then we reconstruct a circle, as
expected, shown in Figure 7.7(b). When we include all Fourier descriptors the reconstruction,
Figure 7.7(c) is very close to the original Figure 7.7(a) with slight differences due to discretization
effects.

et

(a) Original ellipse (b) Reconstruction by zero (c) Reconstruction by all
and first order components Fourier components

Figure 7.7 Reconstructing an ellipse from a Fourier description

This is only an outline of the basis to Fourier descriptors, since we have yet to consider
descriptors that give the same description whatever an object’s position, scale and rotation.
Here we have just considered an object’s description that is achieved in a manner that allows
for reconstruction. To develop practically useful descriptors, we need to consider more basic
properties. As such, we first turn to the use of Fourier theory for shape description.

7.2.3.2 Fourier expansion
To define a Fourier expansion, we can start by considering that a continuous curve c(¢) can be
expressed as a summation of the form

c(t) = cfi(0) (7.1)

where ¢, defines the coefficients of the expansion, and the collection of functions f,(#) defines
the basis functions. The expansion problem centres on finding the coefficients given a set of
basis functions. This equation is very general and different basis functions can also be used. For
example, f,(f) can be chosen such that the expansion defines a polynomial. Other bases define
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splines, Lagrange and Newton interpolant functions. A Fourier expansion represents periodic
functions by a basis defined as a set of infinite complex exponentials. That is,

ct)= > ce™ (7.2)
k=—o00
Here, w defines the fundamental frequency and it is equal to 7/2m, where T is the period of
the function. The main feature of the Fourier expansion is that it defines an orthogonal basis.
This simply means that

[ f0s0a=0 1.3

for k # j. This property is important for two main reasons. First, it ensures that the expansion
does not contain redundant information (each coefficient is unique and contains no information
about the other components). Secondly, it simplifies the computation of the coefficients. That
is, to solve for ¢, in Equation 7.1, we can simply multiply both sides by f,(7) and perform
integration. Thus, the coefficients are given by

T T
o= [ oo /[ 50 7.4
By considering the definition in Equation 7.2 we have:
1 /7 .
Cp = —/ c(f)e k! (7.5)
T Jo

In addition to the exponential form given in Equation 7.2, the Fourier expansion can be expressed
in trigonometric form. This form shows that the Fourier expansion corresponds to the summation
of trigonometric functions that increase in frequency. It can be obtained by considering that

c(t) =co+ Y (cpe +c_e ) (7.6)

k=1

In this equation the values of e/*“’ and e=/**’ define a pairs of complex conjugate vectors. Thus,
¢; and c_; describe a complex number and its conjugate. Let us define these numbers as

Ch=Cr1—JGn and ¢ =c¢+jor, (7.7)

By substitution of this definition in Equation 7.6 we obtain

00 ejkwt+e—jkwt . _ejkwf+e—jkwf
c(t) =co+2 Z (ck,l (—2 ) + JCk.2 ( > )) (7.8)

k=1

That is,

c(t) =cy+2 f:(ck’1 cos(kwt) + ¢, , sin(kwt)) (7.9)

k=1

If we define

we obtain the standard trigonometric form given by
c(r) = % +3 (a, cos (kwt) + by sin (kwt)) (7.11)

k=1
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The coefficients of this expansion, a, and b,, are known as the Fourier descriptors. These
control the amount of each frequency that contributes to make up the curve. Accordingly, these
descriptors can be said to describe the curve, since they do not have the same values for different
curves. Notice that according to Equations 7.7 and 7.10 the coefficients of the trigonometric
and exponential form are related by

a, — jby and _ G + jb,

7.12
2 C_i 2 ( )

Ck ==
The coefficients in Equation 7.11 can be obtained by considering the orthogonal property in
Equation 7.3. Thus, one way to compute values for the descriptors is

T

2 T 2
a, = ?/o c(t)cos(kwt)dt and b, = ?/o ¢ (1) sin (kowt) dt (7.13)

To obtain the Fourier descriptors, a curve can be represented by the complex exponential form
of Equation 7.2 or by the sin/cos relationship of Equation 7.11. The descriptors obtained by
using either of the two definitions are equivalent, and they can be related by the definitions of
Equation 7.12. In general, Equation 7.13 is used to compute the coefficients since it has a more
intuitive form. However, some works have considered the complex form (e.g. Granlund, 1972).
The complex form provides an elegant development of rotation analysis.

7.2.3.3 Shift invariance

Chain codes required special attention to give start point invariance. Let us see whether that
is required here. The main question is whether the descriptors will change when the curve is
shifted. In addition to Equations 7.2 and 7.11, a Fourier expansion can be written in another
sinusoidal form. If we consider that

c,|=+/a?+b> and ¢, =atan"' (b, /a 7.14
k k k k k k

then the Fourier expansion can be written as
a [o]
c(t)= E°+Z|ck|cos(kwt+gok) (7.15)
k=0

Here, |c,| is the amplitude and ¢, is the phase of the Fourier coefficient. An important property of
the Fourier expansion is that |c,| does not change when the function c() is shifted (i.e. translated),
as in Section 2.6.1. This can be observed by considering the definition of Equation 7.13 for a
shifted curve c(f+ «). Here, « represents the shift value. Thus,

2 T 2 T
a, = ?/0 c(t'+a)cos(kwt')dr and b, = ?/0 c(t' +a)sin (kwt') dt (7.16)

By defining a change of variable by r = ¢ +«a, we have

2 T 2 T
a, = ?/o c(t)cos (kwt —kwa)dt and b, = 7“/0 ¢ (1) sin (kwt —kowa)dt (7.17)

After some algebraic manipulation we obtain

a, = a, cos (kwa) + by sin (kwa) and b, = b, cos (kwa) — a; sin (kwa) (7.18)
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The amplitude |c,| is given by

e, | = \/(ak cos (kwa) + b, sin (kwa))* + (b, cos (kwa) — a, sin (koa))? (7.19)

e, =/ a2+ b? (7.20)

Thus, the amplitude is independent of the shift a. Although shift invariance could be incorrectly
related to translation invariance, as we shall see, this property is related to rotation invariance
in shape description.

That is,

7.2.3.4 Discrete computation

Before defining Fourier descriptors, we must consider the numerical procedure necessary to
obtain the Fourier coefficients of a curve. The problem is that Equations 7.11 and 7.13 are
defined for a continuous curve. However, given the discrete nature of the image, the curve c(¢)
will be described by a collection of points. This discretization has two important effects. First, it
limits the number of frequencies in the expansion. Secondly, it forces numerical approximation
to the integral defining the coefficients.

Figure 7.8 shows an example of a discrete approximation of a curve. Figure 7.8(a) shows a
continuous curve in a period, or interval, 7. Figure 7.8(b) shows the approximation of the curve
by a set of discrete points. If we try to obtain the curve from the sampled points, we will find
that the sampling process reduces the amount of detail. According to the Nyquist theorem, the
maximum frequency f, in a function is related to the sample period 7 by

1

T=—— (7.21)
2f.
et f c(t)
Fourier approximation
—
Sampling points
> : T T T T >
0 T 0 — T
(a) Continuous curve (b) Discrete approximation

Figure 7.8 Example of a discrete approximation

Thus, if we have m sampling points, then the sampling period is equal to 7 = T/m. Accord-
ingly, the maximum frequency in the approximation is given by

m
fe=3r (7.22)
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Each term in Equation 7.11 defines a trigonometric function at frequency f, = k/T. By compar-
ing this frequency with the relationship in Equation 7.15, we have that the maximum frequency
is obtained when

k=— 7.23

. (123)
Thus, to define a curve that passes through the m sampled points, we need to consider only
m/2 coefficients. The other coefficients define frequencies higher than the maximum frequency.
Accordingly, the Fourier expansion can be redefined as

c(f) = % + mf (a, cos (kot) + by sin (kwt)) (7.24)

k=1

In practice, Fourier descriptors are computed for fewer coefficients than the limit of m/2.
This is because the low-frequency components provide most of the features of a shape. High
frequencies are easily affected by noise and only represent detail that is of little value to
recognition. We can interpret Equation 7.22 the other way around: if we know the maximum
frequency in the curve, then we can determine the appropriate number of samples. However,
the fact that we consider c(7) to define a continuous curve implies that to obtain the coefficients
in Equation 7.13, we need to evaluate an integral of a continuous curve. The approximation of
the integral is improved by increasing the number of sampling points. Thus, as a practical rule,
to improve accuracy, we must try to have a large number of samples even if it is theoretically
limited by the Nyquist theorem.

Our curve is only a set of discrete points. We want to maintain a continuous curve analysis to
obtain a set of discrete coefficients. Thus, the only alternative is to approximate the coefficients
by approximating the value of the integrals in Equation 7.13. We can approximate the value of the
integral in several ways. The most straightforward approach is to use a Riemann sum. Figure 7.9
illustrates this approach. In Figure 7.9(b), the integral is approximated as the summation of
the rectangular areas. The middle point of each rectangle corresponds to each sampling point.
Sampling points are defined at the points whose parameter is t = i7, where i is an integer

between 1 and m. We consider that ¢; defines the value of the function at the sampling point i.
That is,

c;=c(it) (7.25)

+ c(tcos(kwt) P =(7/m)c,cos(kw,T) } 5(TIm)ccos(kw,T)

0 A 0 e |
T
(a) Continuous curve (b) Riemann sum (c) Linear interpolation

Figure 7.9 Integral approximation

Object description 291



Thus, the height of the rectangle for each pair of coefficients is given by c¢,cos(kwit) and
¢;sin(kwiT). Each interval has a length 7 = T/m. Thus,
T m T
f (1) cos(kwt)dt ~ Y~ —c; cos(kwiT)
0 o m
T m T
and f c(f)sin(kwt)dr =) —¢; sin(kwiT) (7.26)
0 m

i=1

Accordingly, the Fourier coefficients are given by
2 m ‘ n m ' ‘
a,=—)Y c;cos(kwit) and b, =—) c;sin(kwir) (7.27)
i m -

Here, the error due to the discrete computation will be reduced with increase in the number of
points used to approximate the curve. These equations correspond to a linear approximation to
the integral. This approximation is shown in Figure 7.9(c). In this case, the integral is given by
the summation of the trapezoidal areas. The sum of these areas leads to Equation 7.26. Notice
that b, is zero and q, is twice the average of the c¢; values. Thus, the first term in Equation 7.24
is the average (or centre of gravity) of the curve.

7.2.3.5 Cumulative angular function

Fourier descriptors can be obtained by using many boundary representations. In a straightforward
approach we could consider, for example, that ¢ and c(¢) define the angle and modulus of a
polar parameterization of the boundary. However, this representation is not very general. For
some curves, the polar form does not define a single valued curve, and thus we cannot apply
Fourier expansions. A more general description of curves can be obtained by using the angular
function parameterization. This function was defined in Chapter 4 in the discussion about
curvature.

The angular function ¢(s) measures the angular direction of the tangent line as a function
of arc length. Figure 7.10 illustrates the angular direction at a point in a curve. In (Cosgriff,
1960) this angular function was used to obtain a set of Fourier descriptors. However, this first
approach to Fourier characterization has some undesirable properties. The main problem is that
the angular function has discontinuities even for smooth curves. This is because the angular
direction is bounded from zero to 2w. Thus, the function has discontinuities when the angular

><V

Figure 7.10 Angular direction
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direction increases to a value of more than 27 or decreases to be less than zero (since it will
change abruptly to remain within bounds). In Zahn and Roskies’ (1972) approach, this problem
is eliminated by considering a normalized form of the cumulative angular function.

The cumulative angular function at a point in the curve is defined as the amount of angular
change from the starting point. It is called cumulative, since it represents the summation of the
angular change to each point. Angular change is given by the derivative of the angular function
¢(s). We discussed in Chapter 4 that this derivative corresponds to the curvature k(s). Thus,
the cumulative angular function at the point given by (s) can be defined as

s
¥(s) = | k(r)dr—x(0) (7.28)

0
Here, the parameter s takes values from zero to L (i.e. the length of the curve). Thus, the initial
and final values of the function are y(0) = 0 and y(L) = —2, respectively. It is important to

notice that to obtain the final value of —21, the curve must be traced in a clockwise direction.
Figure 7.10 illustrates the relation between the angular function and the cumulative angular
function. In the figure, z(0) defines the initial point in the curve. The value of y(s) is given
by the angle formed by the inclination of the tangent to z(0) and that of the tangent to the
point z(s). If we move the point z(s) along the curve, this angle will change until it reaches the
value of —2. In Equation 7.28, the cumulative angle is obtained by adding the small angular
increments for each point.

The cumulative angular function avoids the discontinuities of the angular function. However,
it still has two problems. First, it has a discontinuity at the end. Secondly, its value depends on
the length of curve analysed. These problems can be solved by defining the normalized function
v*(t), where

AHOEK (%t) +1 (7.29)

Here, ¢ takes values from 0 to 2. The factor L/2m normalizes the angular function such that
it does not change when the curve is scaled. That is, when t = 21, the function evaluates the
final point of the function vy(s). The term ¢ is included to avoid discontinuities at the end of the
function (remember that the function is periodic). That is, it makes that y* (0) = y* (2m) = 0.
In addition, it causes the cumulative angle for a circle to be zero. This is consistent as a
circle is generally considered the simplest curve and, intuitively, simple curves will have simple
representations.

Figure 7.11 illustrates the definitions of the cumulative angular function with two examples.
Figure 7.11(b)—(d) define the angular functions for a circle in Figure 7.11(a). Figure 7.11(f)—(h)
define the angular functions for the rose in Figure 7.11(e). Figure 7.11(b) and (f) define the
angular function ¢(s). We can observe the typical toroidal form. Once the curve is greater than 2
there is a discontinuity while its value returns to zero. The position of the discontinuity depends
on the selection of the starting point. The cumulative function y(s) shown in Figure 7.11(c)
and (g) inverts the function and eliminates discontinuities. However, the start and end points are
not the same. If we consider that this function is periodic, there is a discontinuity at the end of
each period. The normalized form y*(¢) shown in Figure 7.11(d) and (h) has no discontinuity
and the period is normalized to 2.

The normalized cumulative functions are very nice indeed. However, it is tricky to compute
them from images. In addition, since they are based on measures of changes in angle, they
are very sensitive to noise and difficult to compute at inflexion points (e.g. corners). Code 7.1
illustrates the computation of the angular functions for a curve given by a sequence of pixels.
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Figure 7.11 Angular function and cumulative angular function
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%$Angular function
function AngFuncDescrp (curve)

%Function
X=curve(l,:); Y=curve(2,:);
M=size(X,2); %number points

%Arc length
S=zeros (1l,m);
S(1l)=sqgrt ((X(1)-X(m))*2+(Y(1)-Y(m))"2);
for i=2:m
S(i)=S(i-1)+sgrt ((X(i)-X(i-1))"2+(Y(1)-Y(i-1))"2);
End
L=S(m) ;

%$Normalized Parameter
t=(2*pi*S) /L;

%$Graph of the curve
subplot(3,3,1);

plot (X,Y);
mx=max (max (X) ,max(Y))+10;
axis([0,mx,0,mx]); axis square; %$Aspect ratio

%Graph of the angular function y’'/x’
avrg=10;
A=zeros(1l,m) ;
for i=1:m

x1=0; x2=0; y1=0; y2=0;

for j=1:avrg
pa=i-j; pb=i+j;
if (pa<l) pa=m+pa; end
if (pb>m) pb=pb-m; end
x1l=x1+X(pa); yl=yl+Y(pa);
x2=x2+X(pb) ; y2=y2+Y(pb);

end
x1=x1/avrg; yl=yl/avrg;
xX2=x2/avrg; y2=y2/avrg;
dx=x2-x%x1; dy=vy2-v1;

if (dx==0) dx=.00001; end
if dx>0 & dy>0
A(i)=atan(dy/dx) ;
elseif dx>0 & dy<0
A(i)=atan(dy/dx)+2*pi;

else
A(i)=atan(dy/dx) +pi;

end

end

subplot(3,3,2);
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plot(Ss,A);
axis([0,S(m),-1,2*pi+1]);

%Cumulative angular G(s)=-2pi

G=zeros (1l,m);

for i=2:m
d=min(abs(A(i)-A(i-1)),abs(abs(A(i)-A(i-1))-2%*pi));

if d>.5
G(i)=G(i-1);
elseif (A(i)-A(i-1))<-pi
G(1)=G(1i-1)-(A(1)-A(i-1)+2*pi);
elseif (A(i)-A(i-1))>pi
G(1)=G(i-1)-(A(i)-A(i-1)-2*pi);
else
G(1)=G(i-1)-(A(i)-A(i-1));
end
end

subplot(3,3,3);

plot (S,G);
axis([0,S(m),-2*pi-1,1]);

Cumulative angular Normalized
F=G+t;

subplot(3,3,4);
plot (t,F);
axis([0,2*pi,-2*pi,2*pil);

Code 7.1 Angular functions

The matrices X and Y store the coordinates of each pixel. The code has two important steps.
First, the computation of the angular function stored in the matrix A. In general, if we use
only the neighbouring points to compute the angular function, then the resulting function is
useless owing to noise and discretization errors. Thus, it is necessary to include a procedure
that can obtain accurate measures. For purposes of illustration, in the presented code we aver-
age the position of pixels to filter out noise; however, other techniques such as the fitting
process discussed in Section 4.8.2 can provide a suitable alternative. The second important
step is the computation of the cumulative function. In this case, the increment in the angle
cannot be computed as the simple difference between the current and precedent angular values.
This will produce as a result a discontinuous function. Thus, we need to consider the peri-
odicity of the angles. In the code, this is achieved by checking the increment in the angle.
If it is greater than a threshold, we consider that the angle has exceeded the limits of zero
or 2.

Figure 7.12 shows an example of the angular functions computed using Code 7.1, for a discrete
curve. These are similar to those in Figure 7.11(a)—(d), but show noise due to discretization which

296 Feature Extraction and Image Processing



250
200 -
6
150
4
100 F
2
50
0
0 I I [ v ' '
0 50 100 150 200 250 0 50 100 150 200 250 300
(a) Curve (b) Angular function
1 6
0
4
-1
) 2 -
-3 OWMWMW
—4
-2
-5
-6 -4
-7 , , . , , . -6 . , . , ) -
0 50 100 150 200 250 300 0 1 2 3 4 5 6
(c) Cumulative (d) Normalized

Figure 7.12 Discrete computation of the angular functions

produces a ragged effect on the computed values. The effects of noise will be reduced if we use
more points to compute the average in the angular function. However, this reduces the level of
detail in the curve. It also makes it more difficult to detect when the angle exceeds the limits
of zero or 2m. In a Fourier expansion, noise will affect the coefficients of the high-frequency
components, as seen in Figure 7.12(d).

To obtain a description of the curve we need to expand y*(¢) in Fourier series. In a straight-
forward approach we can obtain y*(¢) from an image and apply the definition in Equation 7.27
for c(t) = y*(¢). However, we can obtain a computationally more attractive development with
some algebraically simplifications. By considering the form of the integral in Equation 7.13
we have:

1 2 1 2

a; = —f v*(t)cos(kt)dt and b} = —f v*(t) sin(kt)dz (7.30)
m™J0 m™J0

By substitution of Equation 7.29 we obtain

1 21 1 2

== f y((L/2m)6)dr + — f tdt
Jo wJo
1 21 1 2

a; = —f v((L/2m)t) cos(kt)dr + —f tcos(kr)dt (7.31)
Jo wJo

1 2 1 2
bi=— [ AL/ 2my)sinkndi+— [ rsin(knds
T Jo m Jo
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By computing the second integrals of each coefficient, we obtain a simpler form as

1 2
ay=2m+— fo Y((L/2m)f)ds

1 2
ai=— f y((L/27)1) cos(kr)dt (7.32)
0
br = —% + % fo (L2 sin(k)dr

In an image, we measure distances, thus it is better to express these equations in arc-length
form. For that, we know that s = (L/2)t. Thus,
2
dr = Tds (7.33)

Accordingly, the coefficients in Equation 7.32 can be rewritten as

2 L
apy=2m+ — f v(s)ds
LJo
2 L 21k
a; = 7 -/o v(s) cos (%s) ds (7.34)

2 2t 2wk
b,f:—%—l—zfo y(s)sin(%s)ds

In a similar way to Equation 7.26, the Fourier descriptors can be computed by approximating
the integral as a summation of rectangular areas. This is illustrated in Figure 7.13. Here, the
discrete approximation is formed by rectangles of length 7; and height ;. Thus,

2 m
a; = 7 Z Y,T; Ccos (T Si) (7.35)

| (1)
(a) Continuous curve (b) Riemann sum

Figure 7.13 Integral approximations
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where s, is the arc-length at the ith point. Note that

5=, (7.36)
r=1

It is important to observe that although the definitions in Equation 7.35 only use the discrete
values of y(¢), they obtain a Fourier expansion of y*(¢). In the original formulation (Zahn and
Roskies, 1972), an alternative form of the summations is obtained by rewriting the coefficients
in terms of the increments of the angular function. In this case, the integrals in Equation 7.34 are
evaluated for each interval. Thus, the coefficients are represented as a summation of integrals
of constant values as

ay=2m+~- Z/ Y:ds

,1%1

2 2 i 2wk
a, = — / Y, COS (—s) ds (7.37)
L ; o L

2 27k
b,";:———i— / ylsm( )d

=1 " Si-1

By evaluating the integral we obtain

2
a=2m+- Z%(S Si-1)

i=1

- L5 (sm () (2) 038
) )

A further 51mphflcat10n can be obtained by considering that Equation 7.28 can be expressed in
discrete form as

=) KT, — K, (7.39)

where k, is the curvature (i.e. the difference of the angular function) at the rth point. Thus,

2 m
= 27— =) K;Si,
L i=1
1 27k
a, =—— ) K;T;sin (—s,-_1> (7.40)
Tk ‘] L
2 1 21Tk
b =———— ) K.T.COS —|—— KT
Since
> kT =2m (7.41)

i=1
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thus,

2 m
k
ag = —2m— I Z K;Si
i=1

. 1 & . {2k (7.42)
=——) Kk.7;8in| —s; .
ak 1Tk p—r it L Sz—l
1 2 21k
b =—— )Y k.1.cos| —s.
k 1Tk ; it ( L z—l)

These equations were originally presented in Zahn and Roskies (1972) and are algebraically
equivalent to Equation 7.35. However, they express the Fourier coefficients in terms of
increments in the angular function rather than in terms of the cumulative angular func-
tion. In practice, both implementations (Equations 7.35 and 7.40) produce equivalent Fourier
descriptors.

It is important to notice that the parameterization in Equation 7.21 does not depend on the
position of the pixels, but only on the change in angular information. That is, shapes in different
position and with different scale will be represented by the same curve y*(¢). Thus, the Fourier
descriptors obtained are scale and translation invariant. Rotation-invariant descriptors can be
obtained by considering the shift-invariant property of the coefficients’ amplitude. Rotating
a curve in an image produces a shift in the angular function. This is because the rotation
changes the starting point in the curve description. Thus, according to Section 7.2.3.2, the

values
il =/ (@)’ + (b})° (7.43)

provide a rotation-, scale- and translation-invariant description. The function AngFourier
Descrp in Code 7.2 computes the Fourier descriptors in this equation by using the definitions
in Equation 7.35. This code uses the angular functions in Code 7.1.

$Fourier descriptors based on the Angular function
function AngFuncDescrp (curve,n,scale)

gn=number coefficients

%2if n=0 then n=m/2

%Scale amplitude output

%Angular functions
AngFuncDescrp (curve) ;

$Fourier Descriptors

1f (n==0) n=floor (m/2); end; %Snumber of coefficients
a=zeros(l,n); b=zeros(l,n); %Fourier coefficients
for k=1:n

a(k)=a(k)+G(1)*(S(1)) *cos(2*pi*k*s (1) /L) ;
b(k)=b(k)+G(1)*(S(1))*sin(2*pi*k*S(1) /L) ;
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for 1i=2:m
a(k)=a(k)+G(1i)*(S(i)-S(i-1)) *cos(2*pi*k*S (1) /L) ;
b(k)=b(k)+G(i)*(S(i)-S(i-1))*sin(2*pi*k*S (i) /L) ;
end

%Graphs
subplot(3,3,7);
bar (a) ;
axis([0,n, -scale, scalel);

subplot(3,3,8);
bar (b) ;
axis([0,n, -scale, scalel);

%$Rotation invariant Fourier descriptors
CA=zeros (1l,n);
for k=1:n
CA (k) =sgrt(a(k)"2+b(k)"2);
end

%Graph of the angular coefficients
subplot(3,3,9);

bar(Cca) ;

axis([0,n, -scale,scale]);

Code 7.2 Angular Fourier descriptors

Figure 7.14 shows three examples of the results obtained using the Code 7.2. In each
example, we show the curve, the angular function, the cumulative normalized angular function
and the Fourier descriptors. The curves in Figure 7.14(a) and (e) represent the same object
(the contour of an F-14 fighter), but the curve in Figure 7.14(e) was scaled and rotated. We
can see that the angular function changes significantly, while the normalized function is very
similar but with a remarkable shift due to the rotation. The Fourier descriptors shown in
Figure 7.14(d) and (h) are quite similar since they characterize the same object. We can see a clear
difference between the normalized angular function for the object presented in Figure 7.14(i)
(the contour of a different plane, a Bl bomber). These examples show that Fourier coefficients
are indeed invariant to scale and rotation, and that they can be used to characterize different
objects.

7.2.3.6 Elliptic Fourier descriptors

The cumulative angular function transforms the two-dimensional (2D) description of a curve into
a one-dimensional periodic function suitable for Fourier analysis. In contrast, elliptic Fourier
descriptors maintain the description of the curve in a 2D space (Granlund, 1972). This is
achieved by considering that the image space defines the complex plane. That is, each pixel is
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Figure 7.14 Example of angular Fourier descriptors

represented by a complex number. The first coordinate represents the real part, while the second
coordinate represents the imaginary part. Thus, a curve is defined as

c(t) = x(1) + jy(1)

(7.44)

Here, we will consider that the parameter ¢ is given by the arc-length parameterization.
Figure 7.15 shows an example of the complex representation of a curve. This example illustrates
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two periods of each component of the curve. In general, T = 2, thus the fundamental frequency
is w = 1. It is important to notice that this representation can be used to describe open curves.
In this case, the curve is traced twice in opposite directions. In fact, this representation is
very general and can be extended to obtain the elliptic Fourier description of irregular curves
(i.e. those without derivative information) (Montiel et al., 1996, 1997).

Figure 7.15 Example of complex curve representation

To obtain the elliptic Fourier descriptors of a curve, we need to obtain the Fourier expansion
of the curve in Equation 7.44. The Fourier expansion can be performed by using the complex
or trigonometric form. In the original work, in Granlund (1972), the expansion is expressed in
the complex form. However, other works have used the trigonometric representation (Kuhl and
Giardina, 1982) . Here, we will pass from the complex form to the trigonometric representation.
The trigonometric representation is more intuitive and easier to implement.

According to Equation 7.5, the elliptic coefficients are defined by

Cp = Cq T JjCy (7.45)

where

1 7T _ 1 7T .
Cy = ?/0 x(t)e_”“‘” and ¢, = ?/0 y(t)e_/’“‘” (7.46)

By following Equation 7.12, we notice that each term in this expression can be defined by a
pair of coefficients. That is,
_ axk_jbxk ayk_jbyk
W= MT T
_ (7.47)
A,y — Jbu ay — jby,
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Based on Equation 7.13, the trigonometric coefficients are defined as

2 (7 2 7
ay = ?/ x(t)cos(kwt)dt and b, = ?/ x(t) sin(kwt)dt
0 ° (7.48)
2 (T 2 7
ay = ?/ y(t)cos(kwt)dt and b, = T / y(t) sin(kwt)dt
0 0

which, according to Equation 7.27, can be computed by the discrete approximation given by

2 m 2 m
y=— > x;cos(kwit) and b, = -~ > x; sin(kwiT)
i=1 i=1

(7.49)
2 m 2 m
a, =— ) ycos(kwit) and b, =— ) y sin(kwirt
Yk m i yk m i

i=1 i=1

where x; and y; define the value of the functions x(7) and y(f) at the sampling point i. By
considering Equations 7.45 and 7.47, we can express ¢, as the sum of a pair of complex numbers.
That is,

where
a,+ja b+ jb
A, = "TJ”‘ and B, = "T“" (7.51)

Based on the definition in Equation 7.45, the curve can be expressed in the exponential form
given in Equation 7.6 as

00 —1
c(t) =co+ Z(Ak - jBk)ejkwt + Z (Ay +jBk)€jkwt (7.52)
k=1 k=—o0
Alternatively, according to Equation 7.11 the curve can be expressed in trigonometric form as

c(t) = a;o + > (ay cos(kwt) + by sin(kwt))
k=1

+j (% + i (ayk cos(kwt) + by, sin(kwt))) (7.53)

k=1

In general, this equation is expressed in matrix form as

x(t 1|a, ® lay by ||cos(kwt
O] _ 1], 5 o] [costeon 050

y(1) 2lan| iolax by || sin(kor)
Each term in this equation has an interesting geometric interpretation as an elliptic phasor
(a rotating vector). That is, for a fixed value of k, the trigonometric summation defines the locus
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of an ellipse in the complex plane. We can imagine that as we change the parameter ¢ the point
traces ellipses moving at a speed proportional to the harmonic number k. This number indicates
how many cycles (i.e. turns) give the point in the time interval from zero to 7. Figure 7.16(a)
illustrates this concept. Here, a point in the curve is given as the summation of three vectors that
define three terms in Equation 7.54. As the parameter ¢ changes, each vector defines an elliptic
curve. In this interpretation, the values of a,,/2 and a /2 define the start point of the first vector
(i.e. the location of the curve). The major axes of each ellipse are given by the values of |A,|
and |B,|. The definition of the ellipse locus for a frequency is determined by the coefficients,
as shown in Figure 7.16(b).

Al
B /

a
by vk
bxk Axk

(a) Sum of three frequencies (b) Elliptic phasor

Figure 7.16 Example of a contour defined by elliptic Fourier descriptors

7.2.3.7 Invariance

As in the case of angular Fourier descriptors, elliptic Fourier descriptors can be defined such
that they remain invariant to geometric transformations. To show these definitions we must
first study how geometric changes in a shape modify the form of the Fourier coefficients.
Transformations can be formulated by using both the exponential or trigonometric form. We
will consider changes in translation, rotation and scale using the trigonometric definition in
Equation 7.54.

Let us denote ¢'(¢) = x'(¢) + jy'(¢) as the transformed contour. This contour is defined as

R ol e s
Y (1) 2 ayo | i |G Dy | | sin(kwr) .

If the contour is translated by 7, and 7, along the real and the imaginary axes, respectively,
we have:

x'(1) 1 |ay a, by ||cos(kwi) t,
|:y/(t)i| - 5 |:ay0i| +k=1 |:ayk byk:| |:Sin(ka)t)i| + |:tyi| (756)

That is,
x'(t) 1| aw0+21, > lax by || cos(kwr)
=5 +2 0 (7.57)
y'(1) 2 a0 t+2t | Tlay by || sin(kor)
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Thus, by comparing Equations 7.55 and 7.57, the relationship between the coefficients of the
transformed and original curves is given by
a,=ay, b,=>by a/yk =a, b/yk =by, for k#0
(7.58)
dg=a,n+2t, d,=a,+2t,
Accordingly, all the coefficients remain invariant under translation except for a,, and a,. This
result can be intuitively derived by considering that these two coefficients represent the position
of the centre of gravity of the contour of the shape and translation changes only the position of
the curve.
The change in scale of a contour c(#) can be modelled as the dilation from its centre of
gravity. That is, we need to translate the curve to the origin, scale it and then return it to its
original location. If s represents the scale factor, then these transformations define the curve as

X' (1) 1|ay > la, by || cos(kowr)
|:y/(t)i| T2 |:ay0:| +S]; |:ayk byk:| |:sin(kwt):| (7.59)

Notice that in this equation the scale factor does not modify the coefficients a,, and a, since
the curve is expanded with respect to its centre. To define the relationships between the curve
and its scaled version, we compare Equations 7.55 and 7.59. Thus,

/ _ /o [ /o
ay=say b,=sby a,=sa, b,=sb, for k#0

(7.60)

/ /
axO - axO ayO - ayO

That is, under dilation, all the coefficients are multiplied by the scale factor except for a,, and
ay, which remain invariant.
Rotation can be defined in a similar way to Equation 7.59. If p represents the rotation angle,
then we have:
x'(1) 1 [a 0] |: cos(p) sin(p)] > [a . b k] [cos(kwt)]
, =—| 7|+ . e ) 7.61

|:y (t)] 2 [ay —sin(p) cos(p) g ay by || sin(kot) (7.61)
This equation can be obtained by translating the curve to the origin, rotating it and then returning
it to its original location. By comparing Equations 7.55 and 7.61, we have:

dy = a, cos(p) +ay, sin(p) by = b, cos(p) + by, sin(p)
a/yk = —aysin(p) +a,, cos(p) b/yk = —b sin(p) + b, cos(p) (7.62)

r_ r_
axO - axO ayO - ayO

That is, under translation, the coefficients are defined by a linear combination dependent on
the rotation angle, except for a,, and a,, which remain invariant. It is important to notice that
rotation relationships are also applied for a change in the starting point of the curve.

Equations 7.58, 7.60 and 7.62 define how the elliptic Fourier coefficients change when the
curve is translated, scaled or rotated, respectively. We can combine these results to define the
changes when the curve undergoes the three transformations. In this case, transformations are
applied in succession. Thus,

ay =s(a, cos(p)+aysin(p)) by =s(by cos(p)+ by, sin(p))
dy = s(—aysin(p) +ay cos(p)) by = s(—=bysin(p) + by, cos(p)) (7.63)

/ /
ap=an+2t, ag,=a,+21,
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Based on this result we can define alternative invariant descriptors. To achieve invariance to
translation, when defining the descriptors the coefficient for k = 0 is not used. In Granlund
(1972), invariant descriptors are defined based on the complex form of the coefficients. Alter-
natively, invariant descriptors can be simply defined as

1A 1By

Al By
The advantage of these descriptors with respect to the definition in Granlund (1972) is that
they do not involve negative frequencies and that we avoid multiplication by higher frequencies
that are more prone to noise. By considering the definitions in Equations 7.51 and 7.63 we can
prove that

2 2 2 2
Al Ayt ay B by + by
Al _ ¥ g Bl _ v ’ (7.65)

= = an =
141] \/ail*‘ail 1] bil+_b;

These equations contain neither the scale factor, s, nor the rotation, p. Thus, they are invariant.
Notice that if the square roots are removed, invariance properties are still maintained. However,
high-order frequencies can have undesirable effects.

The function E11ipticDescrp in Code 7.3 computes the elliptic Fourier descriptors of
a curve. The code implements Equations 7.49 and 7.64 in a straightforward way. By default,

(7.64)

%$Elliptic Fourier Descriptors
function EllipticDescrp(curve,n, scale)
gn=num coefficients
%if n=0 then n=m/2
%Scale amplitud output
$Function from image
X=curve(l, :);
Y=curve (2, :);
m=size(X,2);

%$Graph of the curve
subplot(3,3,1);

plot(X,Y);

mx=max (max(X) ,max(Y))+10;

axis([0,mx,0,mx]); %Axis of the graph pf the curve
axis square; $Aspect ratio

%$Graph of X

p=0:2*%pi/m:2*pi-pi/m; $Parameter
subplot(3,3,2);
plot (p,X);
axis([0,2*pi,0,mx]); %Axis of the graph pf the curve

%$Graph of Y
subplot(3,3,3);
plot(p,Y);
axis([0,2*pi,0,mx]); %Axis of the graph pf the curve
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$Elliptic Fourier Descriptors
1f(n==0) n=floor (m/2); end; %number of coefficients

%Fourier Coefficients
ax=zeros(l,n); bx=zeros(l,n);
ay=zeros(1l,n); by=zeros(l,n);

t=2*pi/m;
for k=1:n
for i=1:m
ax (k) =ax(k)+X (1) *cos(k*t*(1-1));
bx (k) =bx(k)+X (i) *sin(k*t* (i-1));
ay(k)=ay (k)+Y (i) *cos (k*t* (i-1) ) ;
by (k)=by (k)+Y (i) *sin(k*t* (i-1) ;
end
ax (k) =ax (k) *(2/m) ;
bx (k) =bx (k) * (2/m) ;
ay (k) =ay (k) *(2/m) ;
by (k) =by (k) * (2/m) ;
end

%Graph coefficient ax
subplot(3,3,4);

bar (ax) ;

axis([0,n, -scale,scale]);

%Graph coefficient ay
subplot (3,3,5);

bar (ay) ;
axis([0,n, -scale, scalel) ;

%Graph coefficient bx
subplot(3,3,6);

bar (bx) ;

axis([0,n, -scale,scale]);

%Graph coefficient by
subplot(3,3,7);

bar (by) ;

axis([0,n, -scale,scale]);

%Invariant
CE=zeros(1l,n);
for k=1:n
CE(k)=sqgrt((ax(k)"2+ay(k)"2)/(ax(l)"2+ay (1) "2))
+sart ( (bx (k) "2+by (k) *2) / (bx (1) "2+by (1) "2));
end

%Graph of Elliptic descriptors
subplot(3,3,8);

bar (CE) ;

axis([0,n,0,2.2]);

Code 7.3 Elliptic Fourier descriptors
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the number of coefficients is half of the number of points that define the curve. However, the
number of coefficients can be specified by the parameter n. The number of coefficients used
defines the level of detail of the characterization. To illustrate this idea, we can consider the
different curves that are obtained by using a different number of coefficients. Figure 7.17 shows
an example of the reconstruction of a contour. In Figure 7.17(a) we can observe that the first
coefficient represents an ellipse. When the second coefficient is considered (Figure 7.17b), the
ellipse changes into a triangular shape. When adding more coefficients the contour is refined
until the curve represents an accurate approximation of the original contour. In this example,
the contour is represented by 100 points. Thus, the maximum number of coefficients is 50.
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Figure 7.17 Fourier approximation

Figure 7.18 shows three examples of the results obtained using Code 7.3. Each example
shows the original curve, the x and y coordinate functions and the Fourier descriptors defined
in Equation 7.64. The maximum in Equation 7.64 is equal to two and is obtained when k = 1.
In the figure we have scaled the Fourier descriptors to show the differences between higher
order coefficients. In this example, we can see that the Fourier descriptors for the curves in
Figure 7.18(a) and (e) (F-14 fighter) are very similar. Small differences can be explained by
discretization errors. However, the coefficients remain the same after changing the location,
orientation and scale. The descriptors of the curve in Figure 7.18(i) (B1 bomber) are clearly
different, showing that elliptic Fourier descriptors truly characterize the shape of an object.

Fourier descriptors are one of the most popular boundary descriptions. As such, they have
attracted considerable attention and there are many further aspects. We can use the descrip-
tions for shape recognition (Aguado et al., 1998). It is important to mention that some work
has suggested that there is some ambiguity in the Fourier characterization. Thus, an alterna-
tive set of descriptors has been designed specifically to reduce ambiguities (Crimmins, 1982).
However, it is well known that Fourier expansions are unique. Thus, Fourier characterization
should uniquely represent a curve. In addition, the mathematical opacity of the technique in
Crimmins (1982) does not lend itself to tutorial type presentation. There has not been much
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Figure 7.18 Example of elliptic Fourier descriptors

study on alternative decompositions to Fourier, although Walsh functions have been suggested
for shape representation (Searle, 1970) and recently wavelets have been used (Kashi et al., 1996)
(although these are not an orthonormal basis function). Three-dimensional Fourier descriptors
were introduced for analysis of simple shapes (Staib and Duncan, 1992) and have been found to
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give good performance in application (Undrill et al., 1997). Fourier descriptors have also been
used to model shapes in computer graphics (Aguado et al., 1999). Fourier descriptors cannot be
used for occluded or mixed shapes, relying on extraction techniques with known indifference to
occlusion (e.g. the Hough transform). However, there have been approaches aimed at classifying
partial shapes using Fourier descriptors (Lin and Chellappa, 1987).

7.3 Region descriptors

So far, we have concentrated on descriptions of the perimeter, or boundary. The natural coun-
terpart is to describe the region, or the area, by regional shape descriptors. Here, there are two
main contenders that differ in focus: basic regional descriptors characterize the geometric prop-
erties of the region, whereas moments concentrate on the density of the region. First, though,
we shall look at the simpler descriptors.

7.3.1 Basic region descriptors

A region can be described by considering scalar measures based on its geometric properties.
The simplest property is given by its size or area. In general, the area of a region in the plane
is defined as

MS:LLKwaw (7.66)

where I(x, y) = 1 if the pixel is within a shape, (x, y) € S, and 0 otherwise. In practice, integrals
are approximated by summations. That is,

A(S) =D I(x, y)AA (7.67)

where AA is the area of one pixel. Thus, if AA = 1, then the area is measured in pixels.
Area changes with changes in scale. However, it is invariant to image rotation. Small errors
in the computation of the area will appear when applying a rotation transformation owing to
discretization of the image.

Another simple property is defined by the perimeter of the region. If x(7) and y(z) denote
the parametric coordinates of a curve enclosing a region S, then the perimeter of the region is
defined as

ma;/ 2(1) + y2(1)dt (7.68)
t
This equation corresponds to the sums all the infinitesimal arcs that define the curve. In the
discrete case, x(7) and y(7) are defined by a set of pixels in the image. Thus, Equation 7.68 is
approximated by

P(S) = Z\/(xi =X )+ (i —yi1)? (7.69)

where x; and y,; represent the coordinates of the ith pixel forming the curve. Since pixels are
organized in a square grid, the terms in the summation can only take two values. When the pixels
(x;,y;) and (x,_,,y;_,) are four-neighbours (as shown in Figure 7.1a), the summation term is
unity. Otherwise, the summation term is equal to +/2. Notice that the discrete approximation in
Equation 7.69 produces small errors in the measured perimeter. As such, it is unlikely that an
exact value of 2mr will be achieved for the perimeter of a circular region of radius r.
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Based on the perimeter and area it is possible to characterize the compactness of a region.
Compactness is an oft-expressed measure of shape given by the ratio of perimeter to area.
That is,

4mA(S)
CS)=——= 7.70
9 ="s; (1.70)
To show the meaning of this equation, we can rewrite it as
A(S
C(S) = # (7.71)
P%(S)/4m

Here, the denominator represents the area of a circle whose perimeter is P(S). Thus, compactness
measures the ratio between the area of the shape and the circle that can be traced with the same
perimeter. That is, compactness measures the efficiency with which a boundary encloses area. In
mathematics, it is known as the isoperimetric quotient, which smacks rather of grandiloquency.
For a perfectly circular region (Figure 7.19a) we have C(circle) = 1, which represents the
maximum compactness value: a circle is the most compact shape. Figure 7.19(b) and (c) show
two examples in which compactness is reduced. If we take the perimeter of these regions and
draw a circle with the same perimeter, we can observe that the circle contains more area. This
means that the shapes are not compact. A shape becomes more compact if we move region
pixels far away from the centre of gravity of the shape to fill empty spaces closer to the centre
of gravity. For a perfectly square region, C(square) = /4. Note that for neither a perfect
square nor a perfect circle does the measure include size (the width and radius, respectively). In
this way, compactness is a measure of shape only. Note that compactness alone is not a good
discriminator of a region; low values of C are associated with convoluted regions such as the
one in Figure 7.19(b) and also with simple but highly elongated shapes. This ambiguity can be
resolved by employing additional shape measures.

(a) Circle (b) Convoluted region (c) Ellipse

Figure 7.19 Examples of compactness

Another measure that can be used to characterize regions is dispersion. Dispersion (irregular-
ity) has been measured as the ratio of major chord length to area (Chen et al., 1995). A simple
version of this measure can be defined as irregularity:

wmax ((x,— )+ (,—5))

5= AGS)

(7.72)

where (x,y) represent the coordinates of the centre of mass of the region. Notice that the
numerator defines the area of the maximum circle enclosing the region. Thus, this measure
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describes the density of the region. An alternative measure of dispersion can also be expressed as
the ratio of the maximum to the minimum radius. That is an alternative form of the irregularity

max (\/ (x— %)+ (3 — &)2>
min (\/ (x; — %)+ (7, — &)2>

This measure defines the ratio between the radius of the maximum circle enclosing the region
and the maximum circle that can be contained in the region. Thus, the measure will increase
as the region spreads. In this way, the irregularity of a circle is unity, IR(circle) = 1; the
irregularity of a square is IR(square) = ~/2, which is larger. As such the measure increases
for irregular shapes, whereas the compactness measure decreases. Again, for perfect shapes
the measure is irrespective of size and is a measure of shape only. One disadvantage of the
irregularity measures is that they are insensitive to slight discontinuity in the shape, such as a
thin crack in a disk. However, these discontinuities will be registered by the earlier measures
of compactness since the perimeter will increase disproportionately with the area. This property
might be desired and so irregularity is to be preferred when this property is required. In fact, the
perimeter measures will vary with rotation owing to the nature of discrete images and are more
likely to be affected by noise than the measures of area (since the area measures have inherent
averaging properties). Since the irregularity is a ratio of distance measures and compactness is
a ratio of area to distance, intuitively it would appear that irregularity will vary less with noise
and rotation. Such factors should be explored in application, to check that desired properties
have indeed been achieved.

Code 7.4 shows the implementation for the region descriptors. The code is a straightforward
implementation of Equations 7.67, 7.69, 7.70, 7.72 and 7.73. A comparison of these measures for

IR(S) = (7.73)

%Region descriptors (compactness)
function RegionDescrp (inputimage)

%Image size
[rows,columns]=size (inputimage) ;

%area
A=0;
for x=1:columns
for y=1:rows
if inputimage(y,x)==0 A=A+1; end
end
end

%0btain Contour
C=Contour (inputimage) ;

%$Perimeter & mean
X=C(1, :); Y=C(2,:); m=size(X,2);
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mx=X(1); my=Y (1)
(

P=sqgrt ((X(1)-X(m)) "2+ (Y (1)-Y(m))"2);

for 1i=2:m

P=P+sqQrt ((X(1)-X(i-1))"2+(Y(1)-Y(i-1))"2);

mx=mx+X (1); my=my+Y (i) ;

end

mx=mx/m; my=my/m;

$Compactness
Cp=4*pi*A/P"2;

%Dispersion
max=0; min=99999;
for i=1:m
d=((X(1) -mx) "2+ (Y (i) -my) *2) ;
if (d>max) max=d; end
if (d<min) min=d; end
end
I=pi*max/A;
IR=sgrt (max/min) ;
%Results
disp('perimeter="); disp(P);
disp('area="'); disp(Aa);
disp('Compactness=") ; disp(Cp) ;
disp('Dispersion="); disp(I);
disp('DispersionR=") ; disp (IR);

Code 7.4 Evaluating basic region descriptors

the three regions shown in Figure 7.19 is shown in Figure 7.20. Clearly, for the circle the com-
pactness and dispersion measures are close to unity. For the ellipse the compactness decreases
while the dispersion increases. The convoluted region has the lowest compactness measure and
the highest dispersion values. Clearly, these measurements can be used to characterize, and

hence discriminate between areas of differing shape.

A(S)=4917 A(S)=2316
P(S)=259.27 P(S)=498.63
C(S)=0.91 C(S)=0.11
I(S)=1.00 I(S)=2.24
IR(S)=1.03 IR(S)=6.67

(b) Descriptors for the
convoluted region

(a) Descriptors for the circle

A(S)=6104
P(S)=310.93
C(S)=0.79
I(S)=1.85
IR(S)=1.91

(c) Descriptors for the ellipse

Figure 7.20 Basic region descriptors
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Other measures, rather than focus on the geometric properties, characterize the structure of a
region. This is the case of the Poincarré measure and the Euler number. The Poincarré measure
concerns the number of holes within a region. Alternatively, the Euler number is the difference
of the number of connected regions from the number of holes in them. There are many more
potential measures for shape description in terms of structure and geometry. Recent interest has
developed a measure (Rosin and Zunic, 2005) that can discriminate rectilinear regions, e.g. for
discriminating buildings from within remotely sensed images. We could evaluate global or local
curvature (convexity and concavity) as a further measure of geometry; we could investigate
proximity and disposition as a further measure of structure. However, these do not have the
advantages of a unified structure. We are simply suggesting measures with descriptive ability,
but this ability is reduced by the correlation between different measures. We have already seen
the link between the Poincarré measure and the Euler number; there is a natural link between
circularity and irregularity. However, the region descriptors we have considered so far lack
structure and are largely heuristic, although clearly they may have sufficient descriptive ability
for some applications. As such, we shall now look at a unified basis for shape description which
aims to reduce this correlation and provides a unified theoretical basis for region description, with
some similarity to the advantages of the frequency selectivity in a Fourier transform description.

7.3.2 Moments
7.3.2.1 Basic properties

Moments describe a shape’s layout (the arrangement of its pixels), a bit like combining area,
compactness, irregularity and higher order descriptions together. Moments are a global descrip-
tion of a shape, accruing this same advantage as Fourier descriptors since there is selectivity,
which is an in-built ability to discern, and filter, noise. Further, in image analysis, they are
statistical moments, as opposed to mechanical ones, but the two are analogous. For example, the
mechanical moment of inertia describes the rate of change in momentum; the statistical second
order moment describes the rate of change in a shape’s area. In this way, statistical moments
can be considered as a global region description. Moments for image analysis were originally
introduced in the 1960s (Hu, 1962) (an exciting time for computer vision researchers too!) and
an excellent and a review is available (Prokop and Reeves, 1992).

Moments are often associated more with statistical pattern recognition than with model-based
vision, since a major assumption is that there is an unoccluded view of the target shape. Target
images are often derived by thresholding, usually one of the optimal forms that can require a
single object in the field of view. More complex applications, including handling occlusion,
could presuppose feature extraction by some means, with a model to in-fill for the missing
parts. However, moments do provide a global description with invariance properties and with
the advantages of a compact description aimed at avoiding the effects of noise. As such, they
have proved popular and successful in many applications.

The two-dimensional Cartesian moment is associated with an order that starts from low
(where the lowest is zero) up to higher orders. The moment of order p and g, m,, of a function
I(x,y) is defined as

m,, =/ / x?y9I(x, y)dxdy (7.74)
For discrete images, Equation 7.74 is usually approximated by
m,, =y xPy/I(x,y)AA (7.75)
x oy
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where AA is again the area of a pixel. These descriptors have a uniqueness property in that
it can be shown that if the function satisfies certain conditions, then moments of all orders
exist. Also, and conversely, the set of descriptors uniquely determines the original function, in a
manner similar to reconstruction via the inverse Fourier transform. However, these moments are
descriptors, rather than a specification that can be used to reconstruct a shape. The zero-order
moment, My, 1S

mog = Y 1(x,y)AA (7.76)

which represents the total mass of a function. Notice that this equation is equal to Equa-
tion 7.67 when I(x,y) takes values of zero and one. However, Equation 7.76 is more gen-
eral since the function I(x,y) can take a range of values. In the definition of moments,
these values are generally related to density. The two first order moments, my, and m,,, are
given by

myy =Y Y xl(x,y))AA my =>> yl(x,y)AA (7.77)

For binary images, these values are proportional to the shape’s centre coordinates (the values
merely require division by the shape’s area). In general, the centre of mass (x,y) can be
calculated from the ratio of the first order to the zero-order components as

=m0 5= To (7.78)

My My
The first 10 x-axis moments of an ellipse are shown in Figure 7.21. The moments rise expo-
nentially, so are plotted in logarithmic form. Evidently, the moments provide a set of descrip-
tions of the shape: measures that can be collected together to differentiate between different

shapes.

30 T

20 +

log(ellipse_moment,, ;)

10

T o+

Figure 7.21 Horizontal axis ellipse moments

Should there be an intensity transformation that scales brightness by a particular factor, say
a, such that a new image I'(x, y) is a transformed version of the original one I(x, y), given by

I'(x,y) =al(x,y) (7.79)
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Then the transformed moment values m/, are related to those of the original shape m,, by

m =am (7.80)

rq rq

Should it be required to distinguish mirror symmetry (reflection of a shape about a chosen axis),
then the rotation of a shape about the, say, the x-axis gives a new shape I'(x, y), which is the
reflection of the shape I(x, y) given by

I'(x,y) =1I(—x,) (7.81)
The transformed moment values can be given in terms of the original shape’s moments as
m,, =(=1)"m, (7.82)

However, we are usually concerned with more basic invariants than mirror images, namely
invariance to position, size and rotation. Given that we now have an estimate of a shape’s centre
(in fact, a reference point for that shape), the centralized moments, ., which are invariant to
translation, can be defined as

Mpg =22 (x=X)" (y=3)"I(x, y)AA (7.83)

Clearly, the zero-order centralized moment is again the shape’s area. However, the first order
centralized moment ., is given by

o =22 (y=3)'T(x,y) AA
=22 VI (x, »)AA=3 ) 51 (x,y)AA (7.84)

= My, _)_’ZZI(Xa y)AA
x oy
From Equation 7.77, my, =Y > vl (x,y) AA and from Equation 7.78, y = my, /m, SO
x oy

_ My,
Moy = My — —— My
W)

=0 (7.85)
= M0

Clearly, neither of the first order centralized moments has any description capability since they
are both zero. Going to higher order, one of the second order moments, ,,, is

Moo= ) (x— )_C)QI (x,y)AA
=YY (x—2xx+x°) (x,y) AA (7.86)

=333 (%, )AA =23 > " xI (x, )AA+X*D D 1 (x,y)AA
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since m,, =Y.y xI (x,y) AA and since x = m,,/my,
x oy

2
myg myo

Moy = My —2——mg+ | — | myy
m m

o (7.87)

and this has descriptive capability.

The use of moments to describe an ellipse is shown in Figure 7.22. Here, an original
ellipse (Figure 7.22a) gives the second order moments in Figure 7.22(d). In all cases, the first
order moments are zero, as expected. The moments (Figure 7.22e) of the translated ellipse
(Figure 7.22b) are the same as those of the original ellipse. In fact, these moments show that
the greatest rate of change in mass is around the horizontal axis, as consistent with the ellipse.
The second order moments Figure 7.22(f) of the ellipse when rotated by 90° (Figure 7.22c)
are simply swapped around, as expected: the rate of change of mass is now greatest around the
vertical axis. This illustrates how centralized moments are invariant to translation, but not to
rotation.

(a) Original ellipse (b) Translated ellipse (c) Rotated ellipse
figo=2.4947-10° figo=2.4947-10° figo=6.4217-10°
liog=6.4217-10° fiog=6.4217-10° fiog=2.4947-10°

(d) Second order centralized (e) Second order centralized (f) Second order centralized
moments of original ellipse moments of translated ellipse moments of rotated ellipse

Figure 7.22 Describing a shape by centralized moments

7.3.2.2 Invariant moments

Centralized moments are only translation invariant: they are constant only with change in
position, and no other appearance transformation. To accrue invariance to scale and rotation,
we require normalized central moments, My defined as (Hu, 1962):

MP‘]
N, = — (7.88)
P :U«go
where
y=pT+q+1 Vp+q=2 (7.89)
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Seven invariant moments can be computed from these given by
M1 =1+ 1y,
M2 = (0 — pn)? +47ﬁ1
M3 = (13— 311,)" + 31y — M3)°

M4 = (m3+ ”’712)2 +(my + "’703)2

M5 = (39— 3115) (N30 + M12) + (30 + M12)*> = 3(M1 — M3)°)

+ (3My1 — M03) (M21 + M03) (B(M30 + ”’712)2 — (1M + 7703)2)

(7.90)

M6 = (M9 — M) (N30 + ”’712)2 — (1 + 7703)2) +4n,, (N30 + M12) (M2 + M03)

MT = (315 — 163) (N30 + M12) (30 + ”’712)2 —3(ny, + 7703)2)

+ (3M15 — M30) (M1 + M3) B(My, + "’730)2 — (M + 7703)2)

The first of these, M1 and M2, are second order moments, those for which p+ ¢ = 2. Those
remaining are third order moments, since p + ¢ = 3. (The first order moments are of no
consequence since they are zero.) The last moment, M7, is introduced as a skew invariant

deigned to distinguish mirror images.

Code 7.5 shows the Mathcad implementation that computes the invariant moments M1, M2
and M 3. The code computes the moments by straight implementation of Equations 7.83 and 7.90.
The use of these invariant moments to describe three shapes is illustrated in Figure 7.23.
Figure 7.23(b) corresponds to the same plane in Figure 7.23(a) but with a change of scale

u(p,q, shape):=| cmom¢«— 0
1 rows (shape) -1
X6 —m— - (shape;)
rows (shape) i§0 Peilo
1 rows (shape) -1
yoe ——————- > (shape;) ;

rows (shape) 0

1=
for se0..rows (shape)-1

cmom¢—cmom+ [ (shapeg) g—-xc1?

cmom

w(p, g, im)

+
_p q+1

n(p,q,im):=

2
pn(0,0,1im)
M1 (im):=n(2,0,im)+n(2,0,im)

M2 (im):=(n(2,0,im)-n(0,2,im))%+4n(1,1, im)?

-[ (shapeg) 1-yc]® (shapeg)

M3 (im):=(n(3,0,im)-3-9(1,2,im) )%+ (3-n(2,1,im)-n(0, 3, im))

2

Code 7.5 Computing M1, M2 and M3
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(a) F-14 fighter

(b) F-14 fighter rotated and

(c) B1 bomber

scaled
M1=0.2199 M1 =0.2202 M1 =0.2764
M2 =0.0035 M2 =0.0037 M2=0.0176
M3=0.0070 M3=0.0070 M3 =0.0083

(d) Invariant moments for (a)

(e) Invariant moments for (b)

(f) Invariant moments for (c)

Figure 7.23 Describing a shape by invariant moments

and a rotation. Thus, the invariant moments for these two shapes are very similar. In contrast,
the invariant moments for the plane in Figure 7.23(c) differ. These invariant moments have
the most important invariance properties. However, these moments are not orthogonal, and as
such there is potential for reducing the size of the set of moments required to describe a shape
accurately.

7.3.2.3 Zernike moments

Invariance can be achieved by using Zernike moments (Teague, 1980), which give an orthogonal
set of rotation-invariant moments. These find greater deployment where invariant properties
are required. Rotation invariance is achieved by using polar representation, as opposed to the

Cartesian parameterization for centralized moments. The complex Zernike moment, Z,, , is

p+1 2T ) .
Zyy =" fo fo V., (r,0)" f (r, 0) rdrdf (7.91)

where p is now the radial magnitude and ¢ is the radial direction and where * again denotes the

complex conjugate (as in Section 5.3.2) of a Zernike polynomial, V,,, given by

V,, (1, 0) = qu(r)ejqe where p—gqgiseven and 0<gqg<|p| (7.92)
where R, is a real-valued polynomial given by

p=ldl
2

(p - m)' r_p—2m

O ()

m=0

(7.93)

The order of the polynomial is denoted by p and the repetition by g. The repetition g can
take negative values (since ¢ < |p|), so the radial polynomial uses its magnitude and thus the
inverse relationship holds: R, , (r) = R, _, (r) (changing the notation of the polynomial slightly
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by introducing a comma to make clear that the moment just has the sign of ¢ inverted). The
polynomials of lower degree are

Ry (r)=1

R,(r)=r

R, (r) =171

Ry (r)=r"—1 (7.94)

Ry (r)=3r*=2r
Ry (r) =6r"—6r"+1

and some of these are plotted in Figure 7.24. In Figure 7.24(a) we can see that the frequency
components increase with the order p and the functions approach unity as r — 1. The frequency
content reflects the level of detail that can be captured by the particular polynomial. The change
between the different polynomials shows how together they can capture different aspects of an
underlying signal, across the various values of r. The repetition controls the way in which the
function approaches unity: the influence along the polynomial and the polynomials for different
values of g are shown in Figure 7.24(b).

(a) Different orders (b) Different repetitions

Figure 7.24 Zernike polynomials

These polynomials are orthogonal within the unit circle, so the analysed shape (the area of
interest) has to be remapped to be of this size before calculation of its moments. This implies
difficulty in mapping a unit circle to a Cartesian grid. As illustrated in Figure 7.25, the circle
can be within the area of interest, losing corner information (but that is information rarely of
interest) (Figure 7.25a); or around (encompassing) the area of interest, which then covers areas
where there is no information, but ensures that all the information within the area of interest is
included (Figure 7.25b).
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(a) Unit circle within area of interest  (b) Area of interest within unit circle

Figure 7.25 Mapping a unit circle to an area of interest

The orthogonality of these polynomials assures the reduction in the set of numbers used to
describe a shape. More simply, the radial polynomials can be expressed as

p
qu (r)= Z qukrk (7.95)
k=g

where the Zernike coefficients are
((p+k)/2)!

Bu=(-1)7
((p—K)/2N(k+q) /) ((k—q)/2)!
for p — k = even. The Zernike moments can be calculated from centralized moments as

(7.96)

+1
=253 7 (1) (1) Bt oo (1.97)
k=q =0 m=0
where t = (k— ¢)/2 and where
t t!
(l) T (-1 (7.98)

A Zernike polynomial kernel is illustrated in Figure 7.26. This shows that the kernel can
capture differing levels of shape detail (and that multiple kernels are needed to give a shape’s

(a) Surface plot

Figure 7.26 Zernike polynomial kernel
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description). This kernel is computed in radial form, which is how it is deployed in shape
analysis. Note that differing sets of parameters such as order and repetition control the level of
detail that is analysed by application of this kernel to a shape. The plot shows the real part of
the kernel; the imaginary part is similar, but rotated.

Analysis (and by Equation 7.83), assuming that x and y are constrained to the interval
[—1, 1], gives

Moo
Loy = ——
00 o
2 .
Z, = ;(Mm _JMlo) =0 (7-99)

3 .
Zy = ;(Moz —J21y _Mzo)

which can be extended further (Teague, 1980), and with remarkable similarity to the Hu invariant
moments (Equation 7.90).

The magnitude of these Zernike moments remains invariant to rotation, which affects only
the phase; the Zernike moments can be made scale invariant by normalization. An additional
advantage is that there is a reconstruction theorem. For Nm moments, the original shape f can
be reconstructed from its moments and the Zernike polynomials as

Nm

flx,y) ~ Z Zququ(x, ) (7.100)

p=0 ¢
This is illustrated in Figure 7.27 for reconstructing a simple binary object, the letter A, from
different numbers of moments. When reconstructing this up to the 10th order of a Zernike
moment description (this requires 66 moments) we achieve a grey-level image, which contains

(a) Original shape, (b) Reconstruction (c) Reconstruction (d) Reconstruction
the letter A up to 10th order up to 15th order up to 20th order

(e) Thresholded (b) (f) Thresholded (c) (g) Thresholded (d)

Figure 7.27 Reconstructing a shape from its moments (Prismall et al., 2002)
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much of the overall shape (7.27b). This can be thresholded to give a binary image (Figure 7.27¢),
which shows the overall shape, without any corners. When we use more moments, we increase the
detail in the reconstruction: Figure 7.27(c) is up to 15th order (136 moments) and Figure 7.27(d)
is 20th order (231 moments). The latter of these is much closer to the original image, especially in
its thresholded form (Figure 7.27d). This may sound like a lot of moments, but the compression
from the original image is very high. Note also that even though we can achieve recognition from
a smaller set of moments, these may not represent the hole in the shape, which is not present at
the 10th order, which just shows the overall shape of the letter A. As such, reconstruction can
give insight as to the shape contribution of selected moments: their significance can be assessed
by this and other tests.

These Zernike descriptors have been shown to good effect in application by reconstructing
a good approximation to a shape with only few descriptors (Boyce and Hossack, 1983) and in
recognition (Khotanzad and Hong, 1990). As ever, fast computation has been of (continuing)
interest (Mukundan and Ramakrishnan, 1995; Gu et al., 2002).

7.3.2.4 Other moments

Pseudo Zernike moments (Teh and Chin, 1988) aim to relieve the restriction on normalization
to the unit circle. Complex moments (Abu-Mostafa and Psaltis, 1985) aim to provide a simpler
moment description with invariance properties. In fact, since there is an infinite variety of
functions that can be used as the basis function, we also have Legendre (Teague, 1980) and,
more recently, Tchebichef (although this is sometimes spelt Chebyshev) moments (Mukundan,
2001). There is no detailed comparison yet available, but there are advantages and disadvantages
to the differing moments, often exposed by application. As an extension into the time domain,
Shutler and Nixon (2006) developed velocity moments, which can be used to recognize moving
objects over a sequence of images, applied in that case to recognizing people by their gait. The
moments sum over a sequence of / images as

I
VM =N DY UG, a, )S(3i, p, Q)Pim, (7.101)

i=2 xeP yeP

where N is a scaling coefficient, P,-H is the ith image in the sequence, S are the moments
describing a shape’s structure (and can be Cartesian or Zernike), and U are moments that
describe the movement of the shape’s centre of mass between frames. Rotation was not included;
the technique was shown to be capable for use in recognizing walking subjects, not gymnasts.

Finally, there are affine invariant moments, which do not change with position, rotation and
different scales along the coordinate axes, as a result, say, of a camera not being normal to
the object plane. Here, the earliest approach appears to be by Flusser and Suk (1993). One
of the reviews (Teh and Chin, 1988) concentrates on information content (redundancy), noise
sensitivity and representation ability, comparing the performance of several of the more popular
moments in these respects.

It is possible to explore the link between moments and Fourier theory (Mukundan and
Ramakrishnan, 1998). The discrete Fourier transform of an image (Equation 2.22), can be
written as

2 2w
FP,,=— Y Y P, e/N“e/W" (7.102)
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By using the Taylor expansion of the exponential function

et = -~ (7.103)
p=0 P
we can substitute for the exponential functions as
1 N-IN-] ——ux oo (_i2m, )
=—ZZP”Z( A Z( Iy ) (7.104)
x=0 y=0 p q=0 q-

which, by collecting terms, gives

1 N-InN-l ( 211)1?+61
=— Z > oxP quyZZ ' Pyl (7.105)
x=0 y=0 p=0¢=0 pq

and by the definition of Cartesian moments, Equation 7.74, we have
. +q
L ()

N Py,
uvim,, (7.106)
This implies that the Fourier transform of an image can be derived from its moments. There is
then a link between the Fourier decomposition and that by moments, showing the link between

the two. But we can go further, since there is the inverse Fourier transform, Equation 2.23,

N—-1N-1

27
=> > FP,, e’N”x TN (7.107)

u=0 v=0
So the original image can be computed from the moments as

N—1N-1 1 00 o0 ( 21T)p+q
=33 e’ N J N Z P ] uvim,, (7.108)
x=0 y=0 P 04=0

and this shows that we can get back to the image from our moment description, although care
must be exercised in the choice of windows from which data are selected. This is reconstruction:
we can reconstruct an image from its moment description. There has not been much study
on reconstruction from moments, despite its apparent importance in understanding the potency
of the description that has been achieved. Potency is usually investigated in application by
determining the best set of moment features to maximize recognition capability (and we shall
turn to this in the next chapter). Essentially, reconstruction from basic geometric (Cartesian)
moments is impractical (Teague, 1980) and the orthogonal bases functions such as the Zernike
polynomials offer a simpler route to reconstruction, but these still require thesholding. More
recently, Prismall et al. (2002) used (Zernike) moments for the reconstruction of moving objects.

7.4 Further reading

This chapter has essentially been based on unified techniques for border and region description.
There is much more to contour and region analysis than indicated at the start of the chapter, for
this is one the starting points of morphological analysis. There is an extensive review available
(Loncaric, 1998) with many important references in this topic. The analysis neighbourhood
can be extended to be larger (Marchand and Sharaiha, 1997) and there is consideration of
appropriate distance metrics for this (Das and Chatterji, 1988). A much more detailed study
of boundary-based representation and application can be found in van Otterloo’s fine text
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(1991). There are many other ways to describe features, although few have the unique attributes
of moments and Fourier descriptors. There is an interrelation between boundary and region
description: curvature can be computed from a chain code (Rosenfeld, 1974); Fourier descriptors
can also be used to calculate region descriptions (Kiryati and Maydan, 1989). There have been
many approaches to boundary approximation by fitting curves to the data. Some of these use
polynomial approximation, and there are many spline-based techniques. A spline is a local
function used to model a feature in sections. There are quadratic and cubic forms (for a good
review of spline theory, try Ahlberg et al., 1967, or Dierckx, 1995); of interest, snakes are
energy-minimizing splines. There are many methods for polygonal approximations to curves,
and recently a new measure has been applied to compare performance on a suitable curve of
techniques based on dominant point analysis (Rosin, 1997). To go with the earlier-mentioned
review (Prokop and Reeves, 1992), there is a book available on moment theory (Mukundan
and Ramakrishnan, 1998) showing the whole moment picture. As in the previous chapter, the
skeleton of a shape can be used for recognition. This is a natural target for thinning techniques
that have not been covered here. An excellent survey of these techniques, as used in character
description following extraction, can be found in Trier et al. (1996), describing use of moments
and Fourier descriptors.
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